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ABSTRACT

This paper develops an analytic option pricing model for the case of serially corre-

lated asset returns. This model provides a valuable insight into dependence of option

price on the return autocorrelation. A surprising relationship is found between asset price

volatility, asset return volatility and asset return autocorrelation coefficient. The analytical

solution obtained here reduces to the well known Black Scholes option pricing formula

for the special case of no autocorrelation in asset returns. However, in the case of seri-

ally correlated asset returns, our model provides superior results by controlling for the

difference between asset price volatility and asset return volatilities. Empirical tests ob-

tain statistically and economically significant results demonstrating the superiority of our

model when compared to the traditional Black Scholes formula. Additionally, a Monte

Carlo method is developed to price option for assets with autocorrelated returns. Numeri-

cal comparison between these two methods demonstrate strikingly similarity, being equal

to within the computational error. This serves to affirm the validity of our method.

∗Rutgers Business School at the Rutgers the State University of New Jersey.



Past research has uncovered significant predictability in short and long-term stock returns.

For the short-term periods Lo and KacKinlay (1988) find that weekly returns on portfolios of

NYSE stocks show reliable positive autocorrelation. To mitigate the nonsynchronous trading

problem, Conrad and Kaul (1988) examine the autocorrelation of Wednesday-Wednesday re-

turns for size grouped portfolios and find first order autocorrelation of weekly returns varying

between 0.09 to 0.3. For longer periods Fama and French (1988) find that autocorrelation of

returns on diversified portfolios of NYSE stocks becomes strongly negative. Similarly Peterba

and Summers (1988) find that the variance on diversified portfolios grows less than in propor-

tion to N (length of observation), this finding is consistent with the hypothesis of negative

serial correlation.

The evidence of persistent autocorrelation in asset returns contradicts the assumption made

in deriving option pricing models. Current option pricing models, regardless of the frame-

work (i) the stochastic-interest rate option models of Merton (1973) and Amin and Jarrow

(1992); (ii) the jump-diffusion/pure jump models of Bates(1991), Madan and Chang (1996),

and Merton (1976); (iii) the constant-elasticity-of-variance model of Cox and Ross (1976);

(iv) the stochastic volatility models of Heston (1993), Hull and White (1987), Melino and

Turnbull (1990, 1995), Scott(1987); (v) stochastic-volatility and stochastic-interest rates mod-

els of Amin and Ng(1993), Bakshi and Chen (1997); (vi) stochastic volatility jump-diffusion

models of Bates (1996a), (this list is by no means exhaustive) assume that asset returns are

distributed independently of each other.

In this paper we are going to create a framework of a lognormally distributed asset price

S with serially correlated returns and derive an analytic option pricing model, capable of pro-

viding an exact solution for a value of a derivatives on such an asset. We will develop a

framework of random, normally distributed, process x, such that lnS = x, with autocorrelated

increments ζ that have volatility σ2 and autocorrelation coefficient ρ. Both parameters can be

estimated using historical data, Hull (1999), Andrews (1993). Autocorrelated returns ζ will
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be constructed using independent identically distributed (iid) normal random variables ε with

arbitrary volatility σ2
ε .

The results obtained from our model show that presence of return autocorrelation affects

the volatility and expected value of asset price, making them functions of correlation coeffi-

cient and time to expiration. We find that within our framework the asset price volatility can

no longer be expressed as σ2t where σ2 is the variance of asset price returns. This finding im-

plies that the traditional approach to estimating asset price volatility contains bias proportional

to autocorrelation coefficient.

We create a Monte Carlo procedure capable of pricing options in the presence of autocor-

relation in asset returns. The simulation results are compared with the analytical results. A

striking accuracy is obtained in this comparison. The values obtained using both methods are

identical to within the rounding error (0.1%).

The rest of this article of organized as follows: Section I develops the framework for a

process with autocorrelated increments. Section II derives an analytical option pricing model

by solving a second order differential equation. Section III provides an alternative derivation

of an analytical option pricing formula within the framework of Section I using an integral

representation of the problem. Section IV lists some of the properties of this option pricing

model and evaluates its performance using stock market data. Section V develops numerical

Monte Carlo procedure to model the option price process with autocorrelation in asset returns,

additionally the results of this simulation are compared with the analytical results obtained in

Sections II and (III) to illustrate the advantages of new analytical model. Concluding remarks

and avenues for further research are offered in Section VI. Proofs of equations are provided

in Appendix.
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I. Serially Correlated Asset Price Process

For the analytical work to follow we would like to construct a framework of normally dis-

tributes variables x having autocorrelated increments with volatility σ2 and autocorrelation

coefficient ρ.

Let x be defined by the following stochastic equation.

∆xn =
√

∆t · ζn(σ2,ρ). (1)

Values of x will follow a random walk with normally distributed autocorrelated increments ζ

that have volatility σ2 and autocorrelation coefficient ρ measured over time period ∆t. Incre-

ments ζ would be constructed using iid normal variables ε. Therefore a stable AR(1) process

of the form

ζn(σ2,ρ) = α · ζn−1(σ2,ρ)+ εn(σ2
ε), (2)

will be used to describe the increments ζ, where εn(σ2
ε) are normal and iid. Equation (2)

has two unknown parameters: α and σ2
ε . Both of them can be found by enforcing the mean

and volatility conditions, i.e. the volatility must equal σ2 and µζ = 0. Solving the resulting

equations and substituting their values back into original equation (2) gives

ζn(σ2,ρ) = ρζn−1(σ2,ρ)+ εn((1−ρ)2σ2). (3)

Therefore, in order for stochastic increments ζ to have a volatility of σ2, the stochastic term

ε must be normally distributed with volatility σ2
ε equal to (1− ρ2)σ2. As is well known,

autocorrelation coefficient for AR(1) model is equal to

ρn = ρn
1 ≡ ρn. (4)
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A correlation decay time τcorr is introduced as

|ρ| ∼ exp(−t/τcorr). (5)

Correlation decay time is equal to the time interval required for the correlation coefficient to

decrease by the factor of e ≈ 2.73. Expression (6) can alternatively be written as

τcorr =
∆t

ln(1/|ρ|) ≥ 0. (6)

where ∆t represents the time increments used to measure the correlation coefficient ρ and

volatility σ2. According to Appendix A, for small values of n, such that n < 1/ln(1/|ρ|), the

volatility of ζn will differ from σ2. In order to satisfy the requirement of Vol(ζ) = σ2, this

process must starts at point n = −k for some large positive k (usually k ≈ 20−30). This does

not conflict with estimating the value of σ2 from historical data. The length of time tradition-

ally used to estimate the volatility of ζ will provide sufficiently large number of observations

to obtain Vol(ζ) = σ2.

For the purposes of option pricing we are only interested in the weak-form solution of

equation (1) that provides the distribution function at a particular time tn. The weak-form

solution of (1) is found to be

xn ∼ N(0,Ψ2(n,ρ)), (7)

where

Ψ2(n,ρ) = σ2
e f f (ρ)t +σ2

corr(ρ)τcorr, (8)

and

σ2
e f f (ρ) =

1+ρ
1−ρ

σ2, (9)

σ2
corr(ρ) = −(1−ρn) · sign(ρ) ·σ2

e f f(ρ), (10)
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where sign(ρ) is a standard sign function. For the continuous time process with positive

correlation, equation (10) can be written as:

σ2
corr(ρ) = −(1−ρn)σ2

e f f (ρ) = − [1− exp(−t/τcorr)]σ2
e f f (ρ). (11)

Figure 1. Ratio of σ2
e f f vs σ2 as a function of autocorrelation coefficient ρ.

The two components of (8) deserve special attention. Time derivative of Ψ2(n,ρ) for

n >> 1 is equal to σ2
e f f (ρ). This value can be greater than σ2 for positive serial correlation or

less than it for negative serial correlation as shown in Figure 1. The second term σ2
corr(ρ)τcorr

can further be split into two components: one is constant and equal to σ2
e f f · sign(ρ) · τcorr, the

second one is equal to exp(−t/τcorr) ·σ2
e f f τcorr. This second term decays exponentially with

time and can be neglected for t >> τcorr but it is very significant for the time periods t ≤ τcorr.
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An analysis of the behavior of Ψ2(n,ρ) yields another interesting result. For t → 0 ,

Ψ2(1,ρ) → 0, and it asymptotically converges to σ2
e f f (t − sign(ρ) · τcorr) for t > 0. In other

words, the initial value of asset price volatility is equal to 0 and converges to its assymptotic

limit during time interval equal to a two-three correlation decay times τ corr

Figure 2. Schematic representation of distributions for ζn and xn

Figure 2 gives a schematic representation of density distribution function fn(ζ) and fn(x)

at different time tn. The density distribution function fn(ζ) (representing transition from time

tn−1 to tn) is independent of tn. Density distribution function fn(x), representing variable

x, flattens out with time tn. It must be pointed out that if the price generation process has

autocorrelated increments, the volatility of price will be different from the volatility of the

price increments. The volatility of a price with uncorrelated increments is equal to σ2t at time

t if the volatility of the price increments is equal to σ2. However this relationship no longer

holds if the returns are autocorrelated. The volatility measure Ψ2(t,ρ) defined earlier by
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Figure 3. σ2
e f f and σ2

corr as functions of time t
This figure presents different measures of volatility: variance of returns σ 2t and asset price variance Ψ2(t). Both
graphs are obtained for σ2 = 0.4

equation (8) measures the volatility of the price when σ2 is the volatility of the autocorrelated

increments. Figure 3 shows Ψ2(n,ρ), the volatility of variable xn as a function of time tn. The

volatility σ2 · t of a price with non-correlated increments is also presented. The assymptotic

limit of Ψ2(n,ρ) is equal to σ2
e f f (ρ)(T − sign(ρ) · τcorr). At time t = 0, Ψ2(0,ρ)≡ 0 and later

it rapidly converges to its asymptotic value σ2
e f f (ρ)(T − sign(ρ) · τcorr) for t >> τcorr. The

values of Ψ2(n,ρ) and its assymptotic limit are almost identical for time t >> τ corr and are

represented by the same curve on Figure 3.

II. Option Pricing Model: Differential Approach

Let us proceed with derivation of option pricing formula when asset price is governed by

the process described in the previous section. Assume that asset prices are log-normally dis-

tributed, i.e. ln(S) = x, where x’s are normally distributed. The derivation of the option pricing

model will be made using Ito stochastic calculus. To make a transformation from x to S in Ito

calculus we need to use chain differentiation rule. In this particular case, Ito lemma cannot be

employed because it is derived for the stochastic process following a Brownian motion. An

extension of Ito calculus has to be derived for an autocorrelated sequence. The exact deriva-
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tion is beyond the scope of this paper and can be found in Mezrin (2003). In that paper, for

a stochastic process with autocorrelation coefficient ρ, chain differentiation rule for (∆S)2 is

found to be

(∆S)2 = σ2
e f f

[
1− sign(ρ) ·ρn 1−ρ

ln|1/ρ|
]

∆t. (12)

For a continuous process with positive autocorrelation equation (12) can be written as

d2S = σ2
e f f

[
1− exp(− t

τcorr
)
]
·dt. (13)

For a special case of a Brownian process (ρ = 0), equation (13) transforms to the well known

result (∆S)2 = σ2∆t given by Ito lemma.

To obtain an option pricing formula applicable in the environment with interest rates, we

add an interest rate term into equation (1). This new stochastic equation for x is given by

∆xn = r∆t +
√

∆t · ζn(σ2,ρ). (14)

It must be pointed out that introduction of interest rate in the form r∆t creates a positive

autocorrelation in the process x. It can be shown that for small values of r, this additional term

for autocorrelation is equal to
r

σ2 · r∆t. (15)

This term is relatively insignificant because it is proportional to the square of r and ∆t, both

of which are quite small. As usual, it will be neglected in the calculations to follow. However,

the calculations can be easily extended to take it into consideration.

An option pricing formula can be obtained in two different ways. First one is by construct-

ing a portfolio of options and stocks. After taking into account hedging, a differential equation

can be derived as was done by Black Scholes (1973). The solution of this differential equation

for certain boundary conditions will yield an option pricing formula. An alternative method
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involves using a density distribution function at time T and chain differential rule. Both of

these methods will lead to identical results.

Let us construct a portfolio of stocks and options, where the weight is chosen to eliminate

the short-term variations in stock price and ensure constant returns on portfolio.

Π = −C +
∂C
∂S

S (16)

The change in the portfolio value is given by ∆Π = −∆C + ∂C
∂S ∆S. Substituting the values of

∆C and ∆S and simplifying yields an expression similar to the Black Scholes equation

[
∂C
∂t

− rC +
∂C
∂S

rS

]
dt +

1
2

∂2C
∂S2 d2S = 0 (17)

To obtain the option value we need to solve equation (17) where stock price S is distributed

lognormally and given by a geometric stochastic equation with autocorrelated incerements.

∆Sn

Sn
= r∆t +

√
∆t · ζn(σ2,ρ). (18)

Solving equation (17) with conditions (18) and chain differentiation rule (13) by means of

Fourier transformation yields the end result

Cρ = S0N(b1)−Ee−rT N(b2), (19)

where

b1 =
lnS0

E + rT + 1
2

[
σ2

e f f (ρ)T +σ2
corr(ρ)∆T

]
√

σ2
e f f (ρ)T +σ2

corr(ρ)∆T
, (20)

b2 = b1 −
√

σ2
e f f (ρ)T +σ2

corr(ρ)∆T . (21)
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This is an exact analytical solution of geometric autocorrelated random walk stochastic equa-

tion (18).

III. Option Pricing Model: Integral Approach

An alternative approach is to use integral representation of the problem. This method is also

be used to create a Monte Carlo simulation of the process. An option pricing formula can

be obtained by integrating the value weighted distribution function of S at the expiration time

tn = T . A price Cρ for a call option would be given as

Cρ = e−rT
∫ ∞

−∞
max(S−E,0) · fρ(S)d(lnS), (22)

where E is the strike price and fρ(S) is given by

fρ(S) =
1√

2π(σ2
e f f T +σ2

corrτcorr)
exp


−

[
lnS− r ·T + 1

2(σ2
e f f T +σ2

corrτcorr

]2

2(σ2
e f f T +σ2

corrτcorr)


 , (23)

where we take into account the chain differentiation rule (13). Substituting (23) into (22) and

integrating, yields the option pricing formula identical to equation (19)

The presence of σ2
corr(ρ)τcorr term in (20) and (21) can be explained by the behavior of

Ψ2(tn,ρ) on the interval 0 ≤ tn ≤ (2− 3)τcorr. Because of the integral nature of the process

it retains memory of its deterministic initial value S0 on the time interval 0 ≤ t ≤ (2−3)τcorr

when it has not randomized completely.

If the initial stages of the process are ignored, a limit equation can be defined when T >>

τcorr as

C̃ρ = S0N(b̃1)−Ee−rT N(b̃2), (24)
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where

b̃1 =
lnS0

E + rT + 1
2

[
σ2

e f f (T − sign(ρ) · τcorr)
]

√
σ2

e f f (ρ)(T − sign(ρ) · τcorr)
, (25)

b̃2 = b̃1 −
√

σ2
e f f (ρ)(T − sign(ρ) · τcorr), σ2

e f f (ρ) =
1+ρ
1−ρ

σ2. (26)

For large T it might be practical to use truncated version of the model given by equation (24)

instead of full version given by equation (19).

IV. Properties of Option Pricing Formula.

The option pricing formula (19) differs from famous Black Scholes option pricing formula

in many aspects. Even for n → ∞, their result will differ because the value of volatility

σ2
e f f (ρ)(T − sign(ρ) · τcorr) is greater than σ2 for positive correlation coefficient and is less

for a mean-reverting process as can be seen from Figure 1. The values of Greeks will also

change due to differences in option valuation formulas. While the expression for ∆ resembles

the one obtained for Black-Scholes formula, Hull (1999),

∆ =
∂Π
∂S

= N(b1) (27)

where the expression for b1 is given by (20). At the same time the expression for Θ has

changed significantly, becoming

Θ =
∂Π
∂T

= − S0N′(b1)σ2
e f f

2
√

σ2
e f f T +σ2

corr∆T
− rEe−rT N(b2) (28)

The empirical test provide evidence of superior performance. The test results presented

in Table (I) confirm that the difference between market value of the option and corresponding

Black Scholes valuation is significantly larger than the difference between market value of the
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option and our price when the price of the stock has autocorrelated returns. The magnitude of

the improvement is statistically significant, being on average equal to 26.6 cent per contract.

The error is reduced on average by 58.53%. Monte Carlo simulation that is described in

Section (V) shows the magnitude of errors when there are no additional factors impacting the

option price.

Table I
Empirical Tests of Option Pricing Model

The value of the difference is calculated by taking the difference of errors between Black Scholes Option pricing
formula and the model developed in Section (II). The tests are significant at 5% singificance level as indicated
by the t statistic. The companies used have to exhibit autocorrelation of returns in excess of 0.1 and have actively
traded options with more than 1000 contracts outstanding.

N ∆C ∆C/CBS Std.Dev. T - Value P Value

147 0.2662 0.5853 0.06711 3.967086 0.000129

The values obtained using analytical solution are shown using a bold line in Figure 4 and

Figure 5 for positive and negative autocorrelation coefficient respectively. For comparison

purposes, same figures show values obtained from Black Scholes option formula (neglecting

the autocorrelation of return).

V. Monte Carlo Simulation.

In this section we want to develop a Monte Carlo procedure capable of simulating a price

path of an asset with autocorrelated returns. An evolution of the asset price S defined by the

stochastic equation (14), after taking into consideration the fact that lnS = x. Numerical simu-

lations employing equation (14) are inconvenient. It is common for Monte Carlo simulations

to use an integral representation of (14) for S. In order to obtain it the chain differentiation
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Figure 4. Option prices Cρ, CBS as functions of T for ρ = 0.4.
Results are presented for different models: Black Scholes model CBS and exact analytical solution using equation
(19) and Cρ. Result of Monte Carlo simulation are shown as solid dots. Option properties: S 0 = 50, E = 53,
r = 0.1, ρ = 0.4, σ = 0.4.

rule (13) has to be used. Therefore, an integral representation of the stochastic equation (14)

for S can be written in form:

Sn+1 = Sn · exp

[
r ·∆t +

√
∆t · ζn(σ2,ρ)− σ2

e f f (ρ)

2
[∆t − sign(ρ) ·ρn · (1−ρ) · τcorr]

]
. (29)

where n = 0,1,2, ...,M, M = T
∆t , and the initial value for (29) is S0 and sequence of ζn’s is

given by

ζn(σ2,ρ) = ρ · ζn−1(σ2,ρ)+ εn((1−ρ)2σ2); n = −k,−k +1, ...0,1,2, ...,M; k ≈ 20−30.

(30)
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Figure 5. Option prices Cρ, CBS as functions of T for ρ = −0.4
Results are presented for different models: Black Scholes model CBS and exact analytical solution using equation
(19) Cρ. Result of Monte Carlo simulation are shown as solid dots. Option properties: S 0 = 50, E = 53, r = 0.1,
ρ = −0.4, σ = 0.4.

As can be seen from equation (30), ζn’s are correlated with the correlation coefficient ρ. As

was pointed out in the earlier section, in order for ζ to have volatility equal to σ2, it must be

preceded with k elements for some large value of k, i.e. ζ must start at ζ−k. (k ≈ 20−30)

The value of the call option is computed according to the formula

Cρ = e−rT 1
I

I

∑
i=1

max(Si −E,0), (31)

where I is the number of simulated trajectories. To obtain reasonable results it is sufficient to

take I ≈ 1−10 million.
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We would like to compare two different approaches derived earlier: an analytical solution

(19) of stochastic equation (18) and simulation technique described above. Table II presents

numerical values for analytical solution and Monte Carlo simulation. The Monte Carlo sim-

ulation used 100 million trajectories to simulate option price by utilizing equation (29) and

(30) with both positive and negative autocorrelation. The results match to within the compu-

tational error (0.1%). This remarkable accuracy serves as a confirmation of both the analytical

model and Monte Carlo simulation technique. Additionally, results of Monte Carlo simulation

for different parameters are presented in Figure 4 and Figure 5 as solid dots. An even better

accuracy can be obtained by increasing number of trajectories. Alternatively, a variational

redundancy technique can be employed, e.g. Quasi-Monte Carlo method.

Table II
Option Prices obtained using numerical and analytical methods

Results are presented for different methods and measures of volatility: truncated option price model (equation
(24)) C̃ρ, Black Scholes model CBS, full analytical option pricing model (equation (19)) Cρ, Monte Carlo simula-
tion CMonteCarlo for I=100 million trajectories. Option properties are: S 0 = 50, E = 53, r = 0.1, ∆t = 0.01.

Positive Autocorrelation ρ = 0.4 Negative Autocorrelation ρ = −0.4

T CBS C̃ρ Cρ CMonteCarlo T CBS C̃ρ Cρ CMonteCarlo

0.1 1.53306 2.61549 2.61546 2.61623 0.1 1.53306 0.81166 0.81167 0.81158

0.2 2.74031 4.46749 4.46749 4.46811 0.2 2.74031 1.59145 1.59145 1.59139

0.3 3.74381 5.92466 5.92466 5.92534 0.3 3.74381 2.28990 2.28990 2.28982

0.4 4.63148 7.17404 7.17404 7.17523 0.4 4.71554 2.99633 2.99633 2.99621

0.5 5.44131 8.28826 8.28826 8.28942 0.5 5.44131 3.53968 3.53968 3.53957

0.8 7.57254 11.1258 11.1258 11.12595 0.8 7.57254 5.19940 5.19940 5.19933

1 8.82745 12.7418 12.7418 12.74311 1 8.82745 6.21538 6.21538 6.21521

VI. Conclusions and Further Research.

We have developed an analytical option pricing model applicable for the case when asset price

returns are serially correlated. The resulting formula demonstrates a surprising relationship be-

tween asset price volatility, asset return volatility and asset return autocorrelation coefficient.
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As a special case for no autocorrelation of returns, our model reduces to a well known Black

Scholes options pricing formula. However, for the case of autocorrelated returns, our model

is free of bias due to under or overestimation of asset price volatility.

While various extensions of the original Black Scholes option pricing formula have been

created in the past, it was not our goal to create a model that would be superior to them.

The purpose of this paper was to account the influence of autocorrelation in asset returns and

determine the effects they have on the price of an option.

The model created here can be further extended to include factors such as stochastic

volatility and interest rates as well as jump diffusion components. We believe that due to

fact that this model controls for autocorrelation in asset returns, the results obtained should be

superior when compared to similar models that do not control for autocorrelation.
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Appendix A. Weak Form Solution for Autocorrelated Pro-

cess

Consider the AR(1) proceses for ζ given by (3) with constant coefficient ρ and variance of stochastic

component ε equal to (1−ρ2)σ2. Our next goal is to find the distribution of ζ. From (3) sequence of

increments is given as

ζ1 = ε1

ζ2 = ρε1 + ε2

ζ3 = ρ(ε2 +ρε1)+ ε3 = ε3 +ρε2 +ρ2ε1

...

ζn = εn +ρεn−1 + ...+ρn−1ε1

Thus, if the random shocks ε are distributed according to ε ∼ N(0,σ2(1−ρ2)) then the distribution of

ζn will be determined according to

ζn ∼ N(0,(1−ρ2)(1+ρ2 +ρ4 + ...+ρ2n−2)σ2) = N(0,(1−ρ2n) ·σ2). (A1)

Hence, ζ are distributed according to a normal distribution with volatility σ2 for n >> 1.
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